skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Casillas, Lizet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydration free energies of small molecules are commonly used as benchmarks for solvation models. However, errors in predicting hydration free energies are partially due to the force fields used and not just the solvation model. To address this, we have used the 3D reference interaction site model (3D-RISM) of molecular solvation and existing benchmark explicit solvent calculations with a simple element count correction (ECC) to identify problems with the non-bond parameters in the general AMBER force field (GAFF). 3D-RISM was used to calculate hydration free energies of all 642 molecules in the FreeSolv database, and a partial molar volume correction (PMVC), ECC, and their combination (PMVECC) were applied to the results. The PMVECC produced a mean unsigned error of 1.01±0.04kcal/mol and root mean squared error of 1.44±0.07kcal/mol, better than the benchmark explicit solvent calculations from FreeSolv, and required less than 15 s of computing time per molecule on a single CPU core. Importantly, parameters for PMVECC showed systematic errors for molecules containing Cl, Br, I, and P. Applying ECC to the explicit solvent hydration free energies found the same systematic errors. The results strongly suggest that some small adjustments to the Lennard–Jones parameters for GAFF will lead to improved hydration free energy calculations for all solvent models. 
    more » « less
  2. Abstract The heliosphere is permeated with highly structured solar wind originating from the Sun. One of the primary science objectives of Parker Solar Probe (PSP) is to determine the structures and dynamics of the plasma and magnetic fields at the sources of the solar wind. However, establishing the connection between in situ measurements and structures and dynamics in the solar atmosphere is challenging: most of the magnetic footpoint mapping techniques have significant uncertainties in the source localization of a plasma parcel observed in situ, and the PSP plasma measurements suffer from a limited field of view. Therefore, it lacks a universal tool to self-contextualize the in situ measurements. Here we develop a novel time series visualization method named Gaussianity Scalogram. Utilizing this method, by analyzing the magnetic magnitude data from both PSP and Ulysses, we successfully identify in situ structures that are possible remnants of solar atmospheric and magnetic structures spanning more than 7 orders of magnitude, from years to seconds, including polar and midlatitude coronal holes, as well as structures compatible with supergranulation, “jetlets” and “picoflares.” Furthermore, computer simulations of Alfvénic turbulence successfully reproduce the Gaussianization of magnetic magnitude, supporting the observed distribution. Building upon these discoveries, the Gaussianity Scalogram can help future studies to reveal the fractal-like fine structures in the solar wind time series from both PSP and a decades-old data archive. 
    more » « less